1. 互聯網金融風控要搞清7個問題:常用的模型有哪些
風險識別、風險估測、風險評價、風險控制和風險管理效果評價等環節。回
目前最常用的風控模型答是哪些?
風控模型 常用於擔保公司測算最高能夠承受的風險並且根據市場與資本建立最有效的風控模型進行風險手段
風控模型 是在良好的建立風控體系風控評定方式評分機制等基礎上進行有效的數據分析及評分體系就是建立常用的風控模型方式
2. 銀行風控發展趨勢是怎樣的
趨勢一:監管拓寬加深
監管范圍正在持續擴大。麥肯錫預計未來十年內,加大消費者保護和「行為」監管的趨勢仍將延續,甚至加快。那些信息不對稱、高轉換成本、不當和晦澀的建議、不透明或過於復雜的產品功能或定價結構都可能受到更為嚴密的審查。產品捆綁和交叉補貼也將更為困難,可以促使一些市場更公平地進行產品定價。
在某些情況下,如果客戶可以改用更符合自身利益的其他產品,銀行甚至有義務告知這一情況。或必須定期告知消費者更廉價的選擇。這些趨勢將會顯著影響銀行風險管理的方方面面。
一是,在監管框架內進行優化。
資本、流動性、融資、杠桿率以及恢復處置機制的建立可能會敦促銀行構建符合所有監管限制的資產負債表和業務,在滿足相關要求比率的前提下充分利用資金。這可能會限制銀行的戰略自由度,要求銀行建立全新且具備高度分析能力的業務優化和戰略制定流程。風險職能在這些領域作用重大,可扮演關鍵角色。
二是,銀行能否光明磊落地披露自己的業務做法?
僅僅符合現有規則是不夠的,如果銀行要免受未來法規的回溯判決影響,就必需遵循一系列廣泛原則。例如,銀行要站在客戶的角度檢視自己的做法是否「公平」,是否能光明磊落地向客戶、監管部門和公眾完整披露自己的業務做法?如果不能,那麼這就是一個明確的警告信號。銀行可能需要評估整個銷售和服務方法,審核端對端流程、定價結構及水平。
三是,消除人工干預,自動合規。
如今法律法規逐漸復雜,不合規問題愈加突出,銀行只能在處理客戶業務風險過程中盡量消除人工干預,把正確的行為固化到產品、服務和流程中。在無法實現自動化干預的領域,強有力的監督監控將會愈發重要,因為這是確保第一道防線錯誤率極低和第二道防線有效監督的唯一方法。
四是,與業務部門協作。
風險職能只有和業務部門加緊合作,才能沉著應對監管要求。銀行要做到零風險全面合規,就要從一開始思考流程構成,而不是業務部門設計完戰略或新產品後再追加馬後炮。
趨勢二:客戶期望改變
未來十年內,客戶期望改變和技術發展料將引發銀行業巨變,使行業改頭換面。屆時,技術普及對客戶而言可能就如家常便飯。
創新影響著價值鏈的每個環節,但最重要的顛覆可能發生在銀行的業務承接和銷售流程上。
回顧一下銀行的基本業務模式就可以了解其中的盈利情況,將近六成的銀行利潤來自於業務承接、銷售、分銷和其他面向客戶的活動。這些活動的凈資本收益率達到了22%的誘人水平。
銀行若要贏得這場客戶關系戰就要付出大量努力,要實現這一目標,風險職能就必須成為核心貢獻者,在整個過程中與業務部門緊密協作,並強調兩個重點:
一是自動化即時決策。
銀行必須建立高度定製化的流程,快速實時響應客戶要求(如開戶、貸款申請等)。風險職能要幫助銀行在無人工干預的環境下進行風險評估和決策制定。這通常要求銀行出台大規模的零基礎流程再設計,採納更多非傳統數據。專門為美英小企業提供貸款解決方案的公司Kabbage就是一個很好的例子。
申請者無需提交復雜冗長的文件便可通過在線途徑快速便捷地申請貸款。Kabbage會評估各種數據來源(如PayPal交易、亞馬遜交易、eBay交易信息和UPS發貨量信息)。
目前,部分銀行正著手設計更便捷的開戶流程,大部分所需數據可通過公共來源預先填好,使客戶受理體驗盡量簡單、做到銜接無縫和簡短。在這種情況下,風險職能的挑戰在於建立起一種安全友好的識別驗證方法。
二是「一人細分客群」。
隨著銀行在客戶細分和產品服務上更加成熟復雜,最終可能會建立「一人細分客群」,提供單人量身定製的價格和產品。不過此舉也復雜化了相應流程,對銀行來說代價不菲。為了保護消費者免受不當定價和審批決策的影響,監管部門也可能對銀行設置諸多限制。
風險職能需要與運營和其他職能共同尋找對策,在提供高度定製化解決方案的同時妥善處理新問題。
趨勢三:讓技術和分析助力風險職能
科技不僅改變了客戶行為,高級分析能力的發展也孕育了全新風險管理技術。層出不窮的新技術帶來了成本更低、速度更快的計算能力和數據存儲,推動了更有效的風險決策支持和流程整合。雖然未來十年還將出現大量未知的創新,並顯著影響風險管理進程。這些創新因素包括大數據、機器學習、眾包。
許多行業都已採用機器學習技術,比如天氣預報、亞馬遜產品推薦、谷歌垃圾郵件識別和奈飛(Netflix)建議都是很好的例子。某些銀行已經開始在催收或信用卡欺詐偵測等領域開展試驗,成效顯著。
衡量模型預測能力的基尼系數也大幅改善。麥肯錫預計,銀行的風險職能將在多個領域採用機器學習,如金融犯罪偵查、信貸審核、早期預警系統、零售和中小企業(SME)客群催收。
互聯網的普及推動了商業設想眾包,許多企業正通過這種方式提高部分領域的工作效率。美國Allstate的保險公司舉辦了一場汽車意外保險理賠演算法眾包挑戰賽,參賽者均為數據科學家。該公司僅用了三個月的時間便成功將模型預測能力提高了2.7倍。
許多此類技術創新都能降低風險成本和罰款。銀行越早採用這些技術便能越早建立競爭優勢。不過,保護客戶數據隱私必須是一個重要前提。
趨勢四:非金融風險類型正在出現
金融風險管理在過去20年取得了長足進步,但其他風險管理卻更似原地踏步。
過去五年來,運營合規風險相關的罰款、損失、法律成本飆升,迫使銀行不得不開始關注這些風險。比如傳染風險、模型風險、網路攻擊等,銀行還需要建立風險職能新能力和新流程,管理跟蹤上述新興風險。
趨勢五:通過消除偏見更科學制定風險決策
另一種風險來源於偏見導致的錯誤決策。銀行風險職能需要加強偏見識別和除偏技巧。
偏見識別。第一步要評估銀行的哪些風險決策可能受到偏見影響。一旦有了這方面的理解,就能更容易識別偏見、降低影響。這個步驟其實相當重要,因為制定風險決策的過程中始終會存在偏見。那大型企業用於貸款審核的模型也會存在同樣的問題嗎?相比於人腦制定信貸決策,使用模型的問題相對較少。
然而,在建模過程中仍然會多少存在偏見。傳統的回歸模型一般始於建模人員的假設,如哪些因素具備預測能力,並應該被納入模型。機器學習藉助演算法自行找出風險動因,成為能有效解決偏見問題的新方案。
除偏技巧。銀行可採用三種技巧減少或避免決策偏見:通過分析為決策制定者提供更多事實;善用辯論技巧消除對話和決策中的偏見;通過組織在企業中建立新的決策方式。
一個比較典型的案例是定性信貸評估(QCA)。全球多家銀行已在新興市場中小企業貸款審核環節用上了QCA,這些市場的財務數據往往缺失、不全或不可靠。在這種情況下,銀行往往需要依靠來自專家的人工判斷。
雖然此舉會導致一些主觀偏見的出現,但銀行可以採取眾多措施提高決策質量。通常銀行會用研討會的形式進行QCA,匯集一批最優秀的信貸主管共同識別一系列潛在的預測因素,然後根據歷史虧損情況逆向測試進行篩選。
趨勢六:大規模降本需求
銀行系統在大部分地區和產品類別上都出現了緩慢但持續的盈利水平下滑。銀行努力通過改善運營成本彌補利潤率下滑,導致凈資產收益率持續保持在長期平均值的低位。
資本要求提高及合規成本增加等一系列監管的進一步收緊、以及低成本數字化競爭者的出現都為銀行帶來了不少壓力,麥肯錫同時預計,這種壓力還會進一步加劇。某些產品更易受到影響,銀行如果仍舊無所作為,到2025年,某些產品類別高達40%的收入將會面臨風險。
既然顛覆性如此強大,銀行必須重新思考運營成本構成,以更低成本創造更高價值。銀行如果已經採用了零基礎預算、增值分析(即需求管理)、外包等傳統的漸進降本方法,簡化、標准化、數字化將是剩下為數不多的大幅降本途徑。
銀行風險需要對加大投入節省風險成本,應對前文提到的多種結構性趨勢。在現有行業和監管環境,克服挑戰無捷徑可走,銀行需要在未來十年內重新思考部署這些決策。
值得關注的是,到2025年,銀行的風險職能將對銀行的成功發揮更加關鍵的作用。2025年,銀行的風險職能可能會擔任無縫、無偏見風險決策和全面組織監控的設計工作,通過降低風險和運營成本、提供直觀的客戶體驗和引導銀行合規等方式創造更大價值。業務承接、銷售、分銷和其他面向客戶的活動。這些活動的凈資本收益率達到了22%的誘人水平。
(2)互聯網金融風控模型設計擴展閱讀
銀行風險管理的實施
銀行風險管理的目標能否實現,不僅取決於銀行風險管理人員的知識水平和管理技能,而且還取決於銀行的組織設置和管理方式等。銀行風險管理的實施必須注重以下四方面的內容:
一是在經營上,必須採取穩健的原則,銀行各部門的管理人員從經營決策到具體業務的操作,都必須考慮各種風險因素,在確保安全的前提下來尋求盈利的極大化。
二是在業務上,採取一系列風險分散或風險轉嫁的自我保護措施,通過將風險管理數量化、具體化和制度化,確保風險在自身能夠承受的范圍之內。
三是在組織安排和部門設置上,要求銀行設置專門的風險管理部門,並且強調與其他部門密切配合,定期對各業務部門制訂的具體風險管理對策和目標進行檢查和監督;並且將市場銷售部和操作系統部分開設置,健全內部的制約機制。總之,銀行在組織安排和部門設置上均必須體現防範風險的思想。
四是在財務上,採取穩健的會計原則,銀行應在執行權責發生制的同時,按照穩健的會計原則,爭取有關部門的支持,對呆賬准備、應收未收款、盈餘分配等方面作出適當的處理,以確保銀行的資產質量,增強銀行抵禦風險的能力。
3. 互聯網金融風控模型一般是如何搭建的
風控模型是在良好的建立風控體系、風控評定方式、評分機制等基礎上,進行有效內的數據分析及評分體系容,就是建立常用的風控模型方式。目前來看,國內的互聯網金融平台搭建風控模型主要有兩種方式:一是自己搭建,二是直接使用三方供應商。比如目前互聯網金融公司廣泛使用的杭州同盾的風控產品和服務。當然,更多的互聯網金融公司都會選擇將兩者結合起來,優化模型,提升效果。
4. p2p是什麼意思通俗講
p2p有兩個意思,分別指的是:
1、p2p指的是對等網路:內
對等網路,容即對等計算機網路,是一種在對等者之間分配任務和工作負載的分布式應用架構,是對等計算模型在應用層形成的一種組網或網路形式。「Peer」在英語里有「對等者、夥伴、對端」的意義。因此,從字面上,P2P可以理解為對等計算或對等網路。
2、p2p指的是互聯網金融點對點借貸平台:
P2P是英文peer to peer lending的縮寫,意即個人對個人。又稱點對點網路借款,是一種將小額資金聚集起來借貸給有資金需求人群的一種民間小額借貸模式。
(4)互聯網金融風控模型設計擴展閱讀:
在P2P網路環境中,彼此連接的多台計算機之間都處於對等的地位,各台計算機有相同的功能,無主從之分,一台計算機既可作為伺服器,設定共享資源供網路中其他計算機所使用,又可以作為工作站,整個網路一般來說不依賴專用的集中伺服器,也沒有專用的工作站。
網路中的每一台計算機既能充當網路服務的請求者,又對其它計算機的請求做出響應,提供資源、服務和內容。通常這些資源和服務包括:信息的共享和交換、計算資源、存儲共享、網路共享、列印機共享等。
5. 大數據徵信的數據來源和方法是什麼
大數據抄徵信的數據的來源是信息的挖掘和數據集合。
大數據與傳統徵信的區別從本質上來看,大數據徵信就是將大數據技術應用到徵信活動中,大數據徵信,簡單地說就是運用這些海量數據集合,經挖掘分析後用於證明一個人或企業的信用狀況。
1、在數據原料方面,越來越多的互聯網在線動態大數據被添加進來。例如一個虛假的借款申請人信息就可以通過分析網路行為痕跡被識別出來,一個真實的互聯網用戶總會在網路上留下蛛絲馬跡。對徵信有用的數據的時效性也非常關鍵,通常被徵信行業公認的有效的動態數據通常是從現在開始倒推24個月的數據。
2、傳統得徵信公司採用的是同業信息分享模式,即客戶查詢一條信息需要先共享一條相應的信息;而互聯網公司則是利用自身的海量數據優勢和用戶信息,從財富、安全、守約、消費、社交等幾個緯度來評判,為用戶建立信用報告,形成以大數據為基礎的海量資料庫。
3、資料庫系統形成以後,單個主體的徵信信息採集將非常容易,徵信服務的邊際成本低,速度快,直接帶來的好處就是徵信服務的費用降低,且服務量很大。而且,資料庫形成後,徵信機構的運行成本更多的是來自知識產權和硬體的投入,相比大規模的人員需求,低成本優勢顯而易見。
6. 互聯網金融風控模型,需要多大的數據
互聯網金融各大資產端都是都是需要大數據支撐的,不同的資產端對應的風控可能會不太一樣。特別是做個人消費貸,風控是最難的,更需要有專業的大數據來做金融風控。
7. 互聯網金融風控模型一般是如何搭建的
風控模型是復在良好的制建立風控體系、風控評定方式、評分機制等基礎上,進行有效的數據分析及評分體系,就是建立常用的風控模型方式。目前來看,國內的互聯網金融平台搭建風控模型主要有兩種方式:一是自己搭建,二是直接使用三方供應商。比如目前互聯網金融公司廣泛使用的杭州同盾的風控產品和服務。當然,更多的互聯網金融公司都會選擇將兩者結合起來,優化模型,提升效果。
8. 互聯網金融風控模型,需要多大的數據
1、基於某類特定目標人群、特定行業、商圈等做風控
由於針對特定人員、行業、商圈等垂直目標做深耕,較為容易建立對應的風險點及風控策略。
例如:
針對大學生的消費貸,主要針對大學生人群的特徵
針對農業機具行業的融資擔保。
針對批發市場商圈的信貸。
2、基於自有平台身份數據、歷史交易數據、支付數據、信用數據、行為數據、黑名單/白名單等數據做風控
身份數據:實名認證信息(姓名、身份證號、手機號、銀行卡、單位、職位)、行業、家庭住址、單位地址、關系圈等等。
交易數據/支付數據:例如B2C/B2B/C2C電商平台的交易數據,P2P平台的借款、投資的交易數據等。
信用數據:例如P2P平台借款、還款等行為累積形成的信用數據,電商平台根據交易行為形成的信用數據及信用分(京東白條、支付寶花唄),SNS平台的信用數據。
行為數據:例如電商的購買行為、互動行為、實名認證行為(例如類似新浪微博單位認證及好友認證)、修改資料(例如修改家庭及單位住址,通過更換頻率來確認職業穩定性)。
黑名單/白名單:信用卡黑名單、賬戶白名單等。
3、基於第三方平台服務及數據做風控
互聯網徵信平台(非人行徵信)、行業聯盟共享數據(例如小貸聯盟、P2P聯盟) FICO服務
Retail Decisions(ReD)、Maxmind服務
IP地址庫、代理伺服器、盜卡/偽卡資料庫、惡意網址庫等
輿情監控及趨勢、口碑服務。諸如宏觀政策、行業趨勢及個體案例的分析等等
4、基於傳統行業數據做風控
人行徵信、工商、稅務、房管、法院、公安、金融機構、車管所、電信、公共事業(水電煤)等傳統行業數據。
5、線下實地盡職調查數據
包括自建風控團隊做線下盡職調查模式以及與小貸公司、典當、第三方信用管理公司等傳統線下企業合作做風控的模式。
雖然貌似與大數據無關,但線下風控數據也是大數據風控的重要數據來源和手段。
9. 互聯網金融風控模型都有哪些
以P2P網貸為例
一、銷售環節
了解客戶申請意願和申請信息的真實性,適用於信專貸員模式,風控關鍵屬點。
風控關鍵點:不同類型的借款申請調用不同的信用評分規則引擎。
二、貸後存量客戶管理環節
存量客戶授信調整是存量客戶管理中的重要一環
風控關鍵點:
1、違約情況觀察,比如是否發生早期逾期,連續多期不還欠款、聯系方式失效等
2、信息關聯排查,比如存量客戶中是否有與新增的黑名單、灰名單數據匹配
三、貸後逾期客戶管理環節
還款意願差和還款能力不足是客戶逾期的主要原因,這個環節主要涉及逾期客戶管理與失聯客戶管理
風控關鍵點:
1、催收模型、策略優化。
2、失聯客戶識別與修復失聯客戶信息。
四、資金流動性管理環節
流動性風險是P2P網貸平台的主要風險,跑路P2P網貸平台的一個重要原因就是發生了擠兌。大數據下的流動性管理其實是實時BI的一個應用。傳統BI數據T+1,大數據是實時BI。
風控關鍵點:
1、資金維度
2、業務維度
10. 京東白條安全嗎可以放心使用么
京東作為一個大平台,京東白條還是挺安全的,如遇到不法分子盜取、欺詐信息,應該提高警惕,保管好相關信息,定期更換密碼並設置復雜一些的密碼,從而更好地保護賬戶安全。
京東白條是京東推出的業內第一款互聯網消費金融產品,提供「先消費,後付款」的全新支付方式,用戶在京東網站使用白條進行付款,可以享受賬期內延後付款或者最長24期的分期付款方式。白條不支持轉賬功能,部分用戶支持白條取現服務。
京東白條打通了京東體系內的O2O、全球購、產品眾籌,之後又逐步覆蓋了租房、旅遊、裝修、教育、婚慶等領域,從賒購服務延伸到提供信用消費貸款,覆蓋更多消費場景,為更多消費者提供信用消費服務。
(10)互聯網金融風控模型設計擴展閱讀
申請條件
京東金融消費金融事業部風控相關負責人透露,消費金融業務沒有一筆授信需要人工審批,都是通過風控大數據模型來識別用戶。後台風控系統會根據購物習慣、信用狀況、收貨地址穩定程度等等,結合多種因素和數據去「識別」用戶,然後迅速給出「白條」是否可激活的評定結果。
大數據模型的評估基礎是用戶數據的累積,並且數據需要實時動態更新。所以,隨著大數據建模更加精準,用戶「白條」激活概率也會提升。目前,京東消費金融已經對接近2億用戶完成了信用評分。
關於白條提額問題,可以定期領取提額包,還有不定期的白條提額活動。保持良好的消費還款記錄,也可以獲得提額獎勵。