导航:首页 > 炒股攻略 > 股票量化投资软件

股票量化投资软件

发布时间:2020-12-19 08:47:18

1. 量化投资、量化交易、量化金融,这三者有什么区别吗

其二,行为金融学认为,投资者是不理性的。任何一个投资个体的判断与决策过程都会不同程度地受到认知、情绪、意志等各种心理因素的影响。基金经理和投资研究员在一段时间跟踪某只股票之后,由于时刻关心股价的表现和基本面的变动,可能出现不同程度的情感依赖,“和股票谈起恋爱”。即使出现了下跌趋势,也可能因为过度自信、抵制心理等不理性的分析出发点而导致投资、荐股时的行为偏差。而量化投资依靠计算机配置投资组合,克服了人性弱点,使投资决策更科学、更理性。

2. 股票量化交易系统有用吗

股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要回不断去感悟去总结每一次的失败答,这样才能走的更好更远。

第一个理念:

顺势而为

股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。

第二个理念:

选定有价值的公司

在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。

第三个理念:

分批建仓 坚持到底

在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。

天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。

3. 如何建立一个股票量化交易模型并仿真

研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。

4. 天字一号股票量化交易系统靠谱吗

一个量化交系统靠不靠谱,一要看他是否有完整的交易体系,有没有完整的建仓、平仓回、仓位控制、资答金管理的体系,同时看是否全品种全状态下都合适。
二要看是否可以提供历史数据回测。
三是看该系统是否可验证实盘资金曲线数据,原学量化系统的实盘历史数据都是可以真是可验证的。
具体一个量化交易系统靠不靠谱,需要亲自对比才知道。

5. 做量化交易一般用什么软件

需要懂一些数学模型,比如统计分析、人工智能算法之类的,他的本质是利用数学模型分析数据潜在的规律寻找交易机会,并利用计算机程序来搜寻交易时机以及完成自动化交易。并没有现成的软件可以做这个,因为它需要一个搭建一个专业的平台,这不是一个人可以完成的。

国内有一些软件,比如大智慧提供数量分析,还有一些软件提供股票、期货的程序化交易。但是实际上这并不是真正意义上的量化交易。事实上,做一款纯粹的适合个人投资者的量化投资软件,难度是非常大的,因为量化策略并不想传统的基本面、技术面那样存在已有既定的必然规律。他需要跨越多学科,多领域去挖掘数据的规律,然后利用得出的规律进行交易。但是不同时间、空间的数据的潜在规律并不一致,所以对量化过程进行标准化是一件很难完成的事情。

如果是计算机或者数学专业的人士,可以考虑使用C、C++、SQL等语言,其他的可以使用MATLAB/SAS 等软件。不管是哪一种软件,要实现量化交易,肯定是需要一定的建模基础和编程基础的,其中最重要的东西是数学能力。

6. 量化投资和对冲基金的区别

首先你要明抄确定性分析和定量分析的区别,定性分析举个简单的例子就是股票和债券的性质是不同的,A股票和B股票是不同的。A股票上午买和A股票下午买是不同的。这是从定性的角度来分析问题。但实际运用当中A股票和B股票又是有联系的。而他们的关联度如何去确定,那么就引入定量分析整个概念了。一般来讲,量化投资都是运用金融建模进行定量分析。其中运用最普遍的是对冲基金。
对冲基金意思是买一个标的物,然后再卖一个标的物。利用标的物与标的物之间的关联性进行套利。而这种套利是需要精确的量化分析进行的。
所以说对冲基金主要运用量化投资这种方法。但量化投资不见得是对冲基金。

7. 为什么说在期货投资上应用量化更有帮助

不一定更有帮助。
量化投资是基于数据的理性分析得到的结果,事实上市场大部分时间都不太专理性。比如某期货属的历史数据很好,量化分析之后也是值得买入,但是市场的动向永远是没有规律的(短期和长期),你不知道一场大雨可能玉米就跌没了。
量化投资做出来的数据都很好看,但是实际上很少有人敢按照策略去操作,因为市场的风云变化是诡异莫测的。
股票用量化投资还相对靠谱(也基本没人用,一看收益都很高,实际操作惨的很),期货风险太大了。究其原因是股票背靠上市公司,只要上市公司基本面没问题、财务没问题就问题不大,顶多有点波动也是可控的。
期货就不一样了,就像前阵子的原油,跌成负的,谁敢想?期货没有一个可靠的背书,谁也保不准你的玉米在合约到期前会不会被水淹了。

8. 股票量化交易策略是什么意思

股市是一门经济学,哲学,概率学,心理学的综合体,想要成功,需要不断去感版悟去总结每一权次的失败,这样才能走的更好更远。

第一个理念:

顺势而为

股市的大趋势决定个股的走势,当指数大涨时个股更容易爆发,这个时候适合重仓介入,当然要注意获利就出;当市场处于弱势时,就要考虑轻仓介入,不盲目追涨。

第二个理念:

选定有价值的公司

在投资中,选定有价值的公司很重要,因为这些公司有很强的上涨潜力,一旦市场有好的信号,或者公司有大利好时,股价就会飞速上涨,所以这样的公司更容易让普通股民赚到钱。

第三个理念:

分批建仓 坚持到底

在投资中,投资者要住的是要做好投资策略,一般的策略就是分批建仓,在市场下跌时以倒金字塔形态建仓,在市场上涨时,以金字塔形态减仓。如果股票短期被套,市场情况还可以的话,则要选择坚持持仓。


天字一号量化交易系统通过设定不同的各种指标条件,一旦市场交易情况满足这些条件时就自动弹出一些操作指示;设定值达到开仓条件,系统会弹出买入信号、设定值达到减仓条件卖出一半或者全部卖出等。

9. 股票量化是什么意思

量化交易是复指以先进的制数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

10. 量化投资和人工智能可以结合吗之前看过一篇人工智能股市三大猜想的文章,想再深入了解一下

可以把两个概念加到一块,进行筛选,望采纳


阅读全文

与股票量化投资软件相关的资料

热点内容
中国银行货币收藏理财上下班时间 浏览:442
中国医药卫生事业发展基金会公司 浏览:520
公司分红股票会涨吗 浏览:778
基金定投的定投规模品种 浏览:950
跨地经营的金融公司管理制度 浏览:343
民生银行理财产品属于基金吗 浏览:671
开间金融公司 浏览:482
基金从业资格科目一的章节 浏览:207
货币基金可以每日查看收益率 浏览:590
投资几个基金合适 浏览:909
东莞市社会保险基金管理局地址 浏览:273
亚洲指数基金 浏览:80
金融公司贷款倒闭了怎么办 浏览:349
金融服务人员存在的问题 浏览:303
怎样开展普惠金融服务 浏览:123
今天鸡蛋期货交易价格 浏览:751
汕头本地证券 浏览:263
利市派股票代码 浏览:104
科创板基金一周年收益 浏览:737
2016年指数型基金 浏览:119