1. 资本资产定价模型里的平均股票的要求收益率怎么求
我的回答(最佳答案)
看平衡收支表,看利润等.先去这个公司看其报表.看利润,要从其内销售收入来看容.
比如利润占的比例是多少.从毛利润的大小可以知道一个公司的进货商如何.
如果毛利润与销售额的比例大,说明其进货便宜.从分红可以看出公司是注重投资,
还是注重短期的获利.从流动资金和流动负债的比例可以看出公司偿还他人的能力。
如果过低,可以从侧面说明公司的管理,效率不高,如果太高,又说明公司不善于投资.
其他方面,你可以从公司的管理人员来看,了解其背景,评估他的能力,以及是否适合这个公司.或者从过去的业绩
来看,然后要看这个公司的贷款如何。如果太多,就有风险,或者说底气不足.用净利润除以销售额可以知道公司在
其他方面的消耗的管理,比如水电,办公用品等.如果结果比较高,说明公司节省,管理有序,如果比较低,说明公司
的效率不高.最后,把公司的每一年的业绩都比较一下,
如果是明显上升,就可以说明公司的方向是正确的。
2. 论股票定价理论和资产定价模型的异同
与资本资产定价模型一样,套利定价理论假设
1.投资者有相同的投资理念;
2.投资者是回版避风险的,并且权要效用最大化;
3.市场是完全的。
与资本资产定价模型不同的是,套利定价理论没有以下假设
1.单一投资期;
2.不存在税收;
3.投资者能以无风险利率自由借贷;
4.投资者以收益率的均值和方差为基础选择投资组合。
3. 股票定价模型的目录
第1章 股票价值
1.1 资本成本
1.2 价值含义
1.3 股票价值与企业价值
1.4 股票价值的创造
1.5 基本投资策略
1.6 正确认识价值评估
第2章 离散时间股票定价模型
2.1 现金流量贴现模型
2.2 股利贴现模型
2.3 超常收益模型
第3章 连续时间会计变量
3.1 连续时间会计变量的概念体系
3.2 会计变量之间的关系
第4章 连续复利股票定价模型
4.1 连续复利股票定价模型
4.2 连续复利股票定价模型的应用
4.3 普通复利股票定价模型
第5章 周期性波动股票定价模型
5.1 周期性波动股票定价模型
5.2 最佳股权股息率
5.3 周期性波动股票定价模型的近似计算
第6章 利用三角函数的近似算法
6.1 利用三角函数的递推计算
6.2 三角函数级数的应用
第7章 一阶自回条件下的股票定价模型
7.1 股权收益生成函数的自回归
7.2 股权股息生成函数的自回归
第8章 连续资本成本股票定价模型
8.1 连续资本成本股票定价模型
8.2 业绩函数股票定价模型
8.3 业绩函数股票定价模型的性质
8.4 一阶自回归业绩函数定价模型
8.5 效应函数股票定价模型
8.6 短期预测下的股票定价模型
第9章 股票价值决定函数
9.1 线性业绩函数
9.2 减速业绩函数
9.3 阶段性业绩函数
9.4 周期性波动业绩函数
9.5 影子业绩函数
9.6 非线性分配函数
第10章 连续时间股票定价模型在管理决策中的应用
第11章 连续时间股票定价模型在实证会计研究中的应用
第12章 股票价值决定因子的实证分析
第13章 连续资本成本股票定价模型的实证分析
第14章 会计变量预测方法
附录 本书涉及的主要拉普拉斯变换
参考文献
4. 什么是black-sholes公式
布莱克-斯科尔斯期权定价模型,用于在给定条件下计算期权价值的。
网络
期权定价模型
期权定价模型(OPM)----由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未来的预测有关;变量过去的历史与演变方式与未来的预测不相关 。模型表明,期权价格的决定非常复杂,合约期限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
中文名
期权定价模型
简称
OPM
创始人
布莱克与舒尔斯
创立时间
20世纪70年代
目录
1发展历程
2理论前驱
3定价方法
4主要模型
▪B-S模型
▪二项式模型
发展历程
编辑
期权是购买方支付一定的期权费后所获得的在将来允许的时间买或卖一定数量的基础商品(underlying assets)的选择权。期权价格是期权合约中唯一随市场供求变化而改变的变量,它的高低直接影响到买卖双方的盈亏状况,是期权交易的核心问题。早在1900年法国金融专家劳雷斯·巴舍利耶就发表了第一篇关于期权定价的文章。此后,各种经验公式或计量定价模型纷纷面世,但因种种局限难于得到普遍认同。70年代以来,伴随着期权市场的迅速发展,期权定价理论的研究取得了突破性进展。
在国际衍生金融市场的形成发展过程中,期权的合理定价是困扰投资者的一大难题。随着计算机、先进通讯技术的应用,复杂期权定价公式的运用成为可能。在过去的20年中,投资者通过运用布莱克——斯克尔斯期权定价模型,将这一抽象的数字公式转变成了大量的财富。
期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。大多从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
1979年,科克斯(Cox)、罗斯(Ross)和卢宾斯坦(Rubinsetein)的论文《期权定价:一种简化方法》提出了二项式模型(Binomial Model),该模型建立了期权定价数值法的基础,解决了美式期权定价的问题。
理论前驱
1、巴施里耶(Bachelier,1900)
2、斯普伦克莱(Sprenkle,1961)
3、博内斯(Boness,1964)
4、萨缪尔森(Samuelson,1965)
定价方法
(1)Black—Scholes公式
(2)二项式定价方法
(3)风险中性定价方法
(4)鞅定价方法等
主要模型
B-S模型
期权定价模型基于对冲证券组合的思想。投资者可建立期权与其标的股票的组合来保证确定报酬。在均衡时,此确定报酬必须得到无风险利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能获得超额回报(超过与风险相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价本质上就是无套利定价。[1]
假设条件
1、标的资产价格服从对数正态分布;
2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
定价公式
C=S·N(D1)-L·(E^(-γT))*N(D2)
其中:
D1=(Ln(S/L)+(γ+(σ^2)/2)*T)/(σ*T^(1/2))
D2=D1-σ*T^(1/2)
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
γ—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布变量的累积概率分布函数,在此应当说明两点:
第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为γ0)一般是一年复利一次,而γ要求利率连续复利。γ0必须转化为r方能代入上式计算。两者换算关系为:γ=LN(1+γ0)或γ0=Eγ-1。例如γ0=0.06,则γ=LN(1+0.06)=0583,即100以583%的连续复利投资第二年将获106,该结果与直接用γ0=0.06计算的答案一致。
第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=0.274。
推导运用
(一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G]=E[max(ST-L,O)]
其中,E[G]—看涨期权到期期望值ST—到期所交易金融资产的市场价值
L—期权交割(实施)价
到期有两种可能情况:1、如果STL,则期权实施以进帐(In-the-money)生效,且mAx(ST-L,O)=ST-L
2、如果ST<>
max(ST-L,O)=0
从而:E[CT]=P×(E[ST|STL)+(1-P)×O=P×(E[ST|STL]-L)
其中:P—(STL)的概率E[ST|STL]—既定(STL)下ST的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C=P×E-rT×(E[ST|STL]-L)(*)这样期权定价转化为确定P和E[ST|STL]。
首先,
对收益进行定义。与利率一致,收益为金融资产期权交割日市场价格(ST)与现价(S)比值的对数值,即收益=1NSTS。由假设1收益服从对数正态分布,即1NSTS~N(μT,σT2),所以E[1N(STS]=μT,STS~EN(μT,σT2)可以证明,相对价格期望值大于EμT,为:E[STS]=EμT+σT22=EμT+σ2T2=EγT从而,μT=T(γ-σ22),且有σT=σT其次,求(STL)的概率P,也即求收益大于(LS)的概率。已知正态分布有性质:Pr06[ζχ]=1-N(χ-μσ)其中:ζ—正态分布随机变量χ—关键值μ—ζ的期望值σ—ζ的标准差所以:P=Pr06[ST1]=Pr06[1NSTS]1NLS]=1N-1NLS2)TTNC4由对称性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定STL下ST的期望值。因为E[ST|ST]L]处于正态分布的L到∞范围,所以,E[ST|ST]=S EγT N(D1)N(D2)
其中:
D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最后,
将P、E[ST|ST]L]代入(*)式整理得B-S定价模型:C=S N(D1)-L E-γT N(D2)(二)B-S模型应用实例假设市场上某股票现价S为164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:
①求D1:D1=(1N164165+(0.052)+0.08412)×0.09590.29×0.0959=0.0328
②求D2:D2=0.0328-0.29×0.0959=-0.570
③查标准正态分布函数表,得:N(0.03)=0.5120N(-0.06)=0.4761
④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803
因此理论上该期权的合理价格是5.803。如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。在没有交易成本的条件下,购买该看涨期权有利可图。
(三)看跌期权定价公式的推导B-S模型是看涨期权的定价公式。
根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:
S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T
移项得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,将B-S模型代入整理得:P=L E-γT [1-N(D2)]-S[1-N(D1)]此即为看跌期权初始价格定价模型。
发展
B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S- E-γT N(D1)-L E-γT N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×0.04=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S E-δT N(D1)-L E-γT N(D2)
影响
自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。该公式的应用随着计算机、通讯技术的进步而扩展。到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。中国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,人们才刚刚起步。
二项式模型
二项式模型的假设主要有:
1、不支付股票红利。
2、交易成本与税收为零。
3、投资者可以以无风险利率拆入或拆出资金。
4、市场无风险利率为常数。
5、股票的波动率为常数。
假设在任何一个给定时间,金融资产的价格以事先规定的比例上升或下降。如果资产价格在时间t的价格为S,它可能在时间t+△t上升至uS或下降至dS。假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价格下降至dS,期权价格也降至Cd。当金融资产只可能达到这两种价格时,这一顺序称为二项程序。
5. 请问股票定价理论与资产定价模型的异同
最大的区别在于对风险的量化方式和描述不同! 投资组合理论是马克维茨提出的,回主要是用方差来答衡量风险,描述的是绝对风险。通过分散化投资,使得投资组合的风险(也就是方差)最小化。 资本资产定价模型(CPAM)公式为:预期收益率=无风险收益率+贝塔值*(市场组合收益率-无风险收益率)。用贝塔值来衡量风险,意思是该项资产价格相对于市场的波动,描述的是相对风险。 希望能帮到你~~
6. Black-Scholes期权定价模型的分红方法
B-S-M模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。
(一)存在已知的不连续红利假设某股票在期权有效期内某时间T(即除息日)支付已知红利DT,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S′=S-DT·E-rT。如果在有效期内存在其它所得,依该法一一减去。从而将B-S模型变型得新公式:
C=(S-·E-γT·N(D1)-L·E-γT·N(D2)
(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004=6.56。值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。
在此红利现值为:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)
7. 持有的定增股票复牌后会跌多少
原因一: 定增所获资金短期内难见效益
我们要认清一点是,现金是不带来增值的,因此,通过增发获得的现金,必须先行变为非现金的资产(如存货)或生产的产能(大多募投方向为产能或收购公司),才可以投入生产。近期增发,很多公司投向多为新能源汽车有关的项目,这些项目从投入建设,到产出,一般周期都达到六个月以上,有的甚至长达2-3年,因此,定增募得的资金是不会很快带来上市公司的盈利。只有收购公司或资产,才有可能尽早实现盈利。
原因二:股票定价模型可推定股票价值下移
股票的价格,是按照一定的定价模型支撑的,以下爱股说对于股票的定价模型:
爱股说股票定价模型
对于定价模型必须厘清的一些概念:
我们可以发现,理论上,股价应该跟三个因素相关,即每股净资产、ROE、n,这三个因素有关,那么什么是 每股净资产、ROE、n(回本周期)呢?
每股净资产,是按上市公司归属于股东的净资产除以总股本计算而得的每股所含的净资产;这个数据大多数的财经网站都有披露。
ROE,即年化扣除非经常性损益的净资产收益率,是上市公司每100元股东投资(或股东权益)每年可以赚得的利润。 如ROE10%,即意味着这家企业每100元股东投资一年可以赚回10元净利润,以此类推。这个数据在爱股说的个股页上就有。这个数据,除爱股说外大多数的财经网站是没有的,有的也都包含了非经常性损益在内,因此,不能准备反映上市公司的经营获利能力。而爱股说披露的这一项数据,是扣除了非经常性损益后的上市公司的经营获利能力。
n,回本周期,即在特定的利率环境下,市场普遍认可多少年回本的时间长短,以年为单位。以当下的利率环境为例,约在8年的左右。
通过定价模型可推导出的结论:
在企业定增完毕后,除n外(n是由于利率环境没有发生重大变化),每股净资产与净资产收益率都会发生变化,其中,每股净资产是因为定增价格接近市场价格,而一般的情况下,市场价格都在2,3倍于每股净资产,甚至更高,因此定增完成后,每股净资产肯定会出现上升。
但是,ROE作为企业的盈利能力的最核心指标,由于短期内企业募集完成的资金难以产生效率,即不可能带来额外的利润,因此,作为分子的净利润变化不大,但作为分母的归属于股东的权益却由于定增而发生大幅增长后,因此,定增完成后ROE几乎肯定会出现明显的下降。
由此,定增导致股价定价模型中的每股净资产与ROE两个因子分别发生向上与向下的变化,但由于ROE与股价是n次方级关系,(1+ROE)^n与股价的关联度远大于每股净资产与股价的关联度,因此,定增结果势必造成股票的合理价格下调。
原因三:套利空间驱动使然
由于定增一般情况下,向不超过10位投资者增发,锁定期12个月。如果这些认购定增的投资者此前持有公司的股票,那么,当定增股票到账后,由于定增的价格低于市场价格,必然带来套利空间。比如说,一名投资者原来持有1000万股,每股市场价格21元,而定增的价格如果为18元,认购500万股,锁定期12个月,那么,在定增股份到账后,把原来持有的1000万股中的500万股沽出,即可以兑现每股约3元的套利空间。因此,由于套利空间的存在,也将会使得股价出现相应的下跌。
当然,有人会说,去年牛市的时候,只要定增,必然会有三五个涨停板。我认为那是很极端的情况,牛市里的表现,是不可以适用在其他正常的市场状态下的。 这就是我们通常看到的,为什么定增后,股价一般会出现下跌的原因。
8. 贝塔系数怎么计算 具体
贝塔系数利用回归的方法计算。贝塔系数为1即证券的价格与市场一同变动。贝塔系数高于1即证版券价权格比总体市场更波动。贝塔系数低于1(大于0)即证券价格的波动性比市场为低。
贝塔系数的计算公式:
其中ρam为证券a与市场的相关系数;σa为证券a的标准差;σm为市场的标准差。
据此公式,贝塔系数并不代表证券价格波动与总体市场波动的直接联系。
不能绝对地说,β越大,证券价格波动(σa)相对于总体市场波动(σm)越大;同样,β越小,也不完全代表σa相对于σm越小。
甚至即使β = 0也不能代表证券无风险,而有可能是证券价格波动与市场价格波动无关(ρam= 0),但是可以确定,如果证券无风险(σa),β一定为零。