導航:首頁 > 炒股攻略 > 股票量化投資軟體

股票量化投資軟體

發布時間:2020-12-19 08:47:18

1. 量化投資、量化交易、量化金融,這三者有什麼區別嗎

其二,行為金融學認為,投資者是不理性的。任何一個投資個體的判斷與決策過程都會不同程度地受到認知、情緒、意志等各種心理因素的影響。基金經理和投資研究員在一段時間跟蹤某隻股票之後,由於時刻關心股價的表現和基本面的變動,可能出現不同程度的情感依賴,「和股票談起戀愛」。即使出現了下跌趨勢,也可能因為過度自信、抵制心理等不理性的分析出發點而導致投資、薦股時的行為偏差。而量化投資依靠計算機配置投資組合,克服了人性弱點,使投資決策更科學、更理性。

2. 股票量化交易系統有用嗎

股市是一門經濟學,哲學,概率學,心理學的綜合體,想要成功,需要回不斷去感悟去總結每一次的失敗答,這樣才能走的更好更遠。

第一個理念:

順勢而為

股市的大趨勢決定個股的走勢,當指數大漲時個股更容易爆發,這個時候適合重倉介入,當然要注意獲利就出;當市場處於弱勢時,就要考慮輕倉介入,不盲目追漲。

第二個理念:

選定有價值的公司

在投資中,選定有價值的公司很重要,因為這些公司有很強的上漲潛力,一旦市場有好的信號,或者公司有大利好時,股價就會飛速上漲,所以這樣的公司更容易讓普通股民賺到錢。

第三個理念:

分批建倉 堅持到底

在投資中,投資者要住的是要做好投資策略,一般的策略就是分批建倉,在市場下跌時以倒金字塔形態建倉,在市場上漲時,以金字塔形態減倉。如果股票短期被套,市場情況還可以的話,則要選擇堅持持倉。

天字一號量化交易系統通過設定不同的各種指標條件,一旦市場交易情況滿足這些條件時就自動彈出一些操作指示;設定值達到開倉條件,系統會彈出買入信號、設定值達到減倉條件賣出一半或者全部賣出等。

3. 如何建立一個股票量化交易模型並模擬

研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。

4. 天字一號股票量化交易系統靠譜嗎

一個量化交系統靠不靠譜,一要看他是否有完整的交易體系,有沒有完整的建倉、平倉回、倉位控制、資答金管理的體系,同時看是否全品種全狀態下都合適。
二要看是否可以提供歷史數據回測。
三是看該系統是否可驗證實盤資金曲線數據,原學量化系統的實盤歷史數據都是可以真是可驗證的。
具體一個量化交易系統靠不靠譜,需要親自對比才知道。

5. 做量化交易一般用什麼軟體

需要懂一些數學模型,比如統計分析、人工智慧演算法之類的,他的本質是利用數學模型分析數據潛在的規律尋找交易機會,並利用計算機程序來搜尋交易時機以及完成自動化交易。並沒有現成的軟體可以做這個,因為它需要一個搭建一個專業的平台,這不是一個人可以完成的。

國內有一些軟體,比如大智慧提供數量分析,還有一些軟體提供股票、期貨的程序化交易。但是實際上這並不是真正意義上的量化交易。事實上,做一款純粹的適合個人投資者的量化投資軟體,難度是非常大的,因為量化策略並不想傳統的基本面、技術面那樣存在已有既定的必然規律。他需要跨越多學科,多領域去挖掘數據的規律,然後利用得出的規律進行交易。但是不同時間、空間的數據的潛在規律並不一致,所以對量化過程進行標准化是一件很難完成的事情。

如果是計算機或者數學專業的人士,可以考慮使用C、C++、SQL等語言,其他的可以使用MATLAB/SAS 等軟體。不管是哪一種軟體,要實現量化交易,肯定是需要一定的建模基礎和編程基礎的,其中最重要的東西是數學能力。

6. 量化投資和對沖基金的區別

首先你要明抄確定性分析和定量分析的區別,定性分析舉個簡單的例子就是股票和債券的性質是不同的,A股票和B股票是不同的。A股票上午買和A股票下午買是不同的。這是從定性的角度來分析問題。但實際運用當中A股票和B股票又是有聯系的。而他們的關聯度如何去確定,那麼就引入定量分析整個概念了。一般來講,量化投資都是運用金融建模進行定量分析。其中運用最普遍的是對沖基金。
對沖基金意思是買一個標的物,然後再賣一個標的物。利用標的物與標的物之間的關聯性進行套利。而這種套利是需要精確的量化分析進行的。
所以說對沖基金主要運用量化投資這種方法。但量化投資不見得是對沖基金。

7. 為什麼說在期貨投資上應用量化更有幫助

不一定更有幫助。
量化投資是基於數據的理性分析得到的結果,事實上市場大部分時間都不太專理性。比如某期貨屬的歷史數據很好,量化分析之後也是值得買入,但是市場的動向永遠是沒有規律的(短期和長期),你不知道一場大雨可能玉米就跌沒了。
量化投資做出來的數據都很好看,但是實際上很少有人敢按照策略去操作,因為市場的風雲變化是詭異莫測的。
股票用量化投資還相對靠譜(也基本沒人用,一看收益都很高,實際操作慘的很),期貨風險太大了。究其原因是股票背靠上市公司,只要上市公司基本面沒問題、財務沒問題就問題不大,頂多有點波動也是可控的。
期貨就不一樣了,就像前陣子的原油,跌成負的,誰敢想?期貨沒有一個可靠的背書,誰也保不準你的玉米在合約到期前會不會被水淹了。

8. 股票量化交易策略是什麼意思

股市是一門經濟學,哲學,概率學,心理學的綜合體,想要成功,需要不斷去感版悟去總結每一權次的失敗,這樣才能走的更好更遠。

第一個理念:

順勢而為

股市的大趨勢決定個股的走勢,當指數大漲時個股更容易爆發,這個時候適合重倉介入,當然要注意獲利就出;當市場處於弱勢時,就要考慮輕倉介入,不盲目追漲。

第二個理念:

選定有價值的公司

在投資中,選定有價值的公司很重要,因為這些公司有很強的上漲潛力,一旦市場有好的信號,或者公司有大利好時,股價就會飛速上漲,所以這樣的公司更容易讓普通股民賺到錢。

第三個理念:

分批建倉 堅持到底

在投資中,投資者要住的是要做好投資策略,一般的策略就是分批建倉,在市場下跌時以倒金字塔形態建倉,在市場上漲時,以金字塔形態減倉。如果股票短期被套,市場情況還可以的話,則要選擇堅持持倉。


天字一號量化交易系統通過設定不同的各種指標條件,一旦市場交易情況滿足這些條件時就自動彈出一些操作指示;設定值達到開倉條件,系統會彈出買入信號、設定值達到減倉條件賣出一半或者全部賣出等。

9. 股票量化是什麼意思

量化交易是復指以先進的制數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

10. 量化投資和人工智慧可以結合嗎之前看過一篇人工智慧股市三大猜想的文章,想再深入了解一下

可以把兩個概念加到一塊,進行篩選,望採納


閱讀全文

與股票量化投資軟體相關的資料

熱點內容
中國銀行貨幣收藏理財上下班時間 瀏覽:442
中國醫葯衛生事業發展基金會公司 瀏覽:520
公司分紅股票會漲嗎 瀏覽:778
基金定投的定投規模品種 瀏覽:950
跨地經營的金融公司管理制度 瀏覽:343
民生銀行理財產品屬於基金嗎 瀏覽:671
開間金融公司 瀏覽:482
基金從業資格科目一的章節 瀏覽:207
貨幣基金可以每日查看收益率 瀏覽:590
投資幾個基金合適 瀏覽:909
東莞市社會保險基金管理局地址 瀏覽:273
亞洲指數基金 瀏覽:80
金融公司貸款倒閉了怎麼辦 瀏覽:349
金融服務人員存在的問題 瀏覽:303
怎樣開展普惠金融服務 瀏覽:123
今天雞蛋期貨交易價格 瀏覽:751
汕頭本地證券 瀏覽:263
利市派股票代碼 瀏覽:104
科創板基金一周年收益 瀏覽:737
2016年指數型基金 瀏覽:119